
Simple models for w e t - s n o w  accret ion 
on transmission lines: snow load and 
liquid w a t e r  content  
G. Poots and P. L. I. Ske l ton  
Centre for Industrial Appl ied Mathematics, University of Hull, Hull, UK 

A simplified heat and mass transfer model is proposed for wet-snow accretion on an 
overhead transmission line conductor. The accretion processes near the tower and the 
center of the span are formulated using the large relaxation time approximation (LRTA) 
and the cylindrical-sleeve approximation (CSA), respectively. The heat and mass transfer 
equations governing the snow evolution process are solved analytically to yield predictions 
for the snow load and the liquid water content of the snow matrix as a function of the 
wind speed, relative humidity, air temperature, precipitation rate, and diameter and thermal 
properties of the conductor. The interactive roles of these meteorological and physical 
variables are analyzed for the one-dimensional problems of snow accretion in a plane 
layer and cylindrical-sleeve growth on a conductor, and for the two-dimensional problem 
of snow accretion by axial growth. Effects due to wet-snow densification and the accretion 
factor for snowflake impaction are also incorporated. 
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I n t r o d u c t i o n  

Genera/ 

Wet-snow accretion occurs on overhead line conductors in the 
air-temperature range T~ ~ [0, 5"1°C. In the accretion process, 
a snowflake, which is a mixture of air, ice, and water, collides 
with the snow/conductor surface and suffers fragmentation. It 
is observed (see Wakahama et al. 1977) that some of the 
fragments adhere to the surface and the remainder ricochet into 
the air flow. During the accretion process, the wet snow 
undergoes a rapid process of metamorphosis in which the snow 
fragments form a snow matrix held together by capillary forces 
and ice bonding. The strength of these forces depends on the 
liquid water content (LWC) of the snow matrix: if the LWC is 
greater than 40% (see Admirat et al. 1988a), the wet-snow 
adhesion is greatly reduced, and the snow deposit is shed due 
to wind force and aerodynamic torque. Hence, the problem of 
the prediction of wet-snow load, relevant to design criteria for 
overhead line conductors, is allied to the study of the 
thermodynamic state of the snow deposit. 

In this paper, existing theoretical snow models for the 
prediction of snow load on a conductor are reviewed, and a 
thermodynamic model for the prediction of the LWC of the 
snow matrix is extended. Two limiting modes of snow 
accretion, which occur on the conductor span, are examined. 
It is the aim of this paper to predict the LWC of these modes 
during the snow evolution process. 
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Wet-snow load 

The calculation of the snow load on a conductor of finite span 
and finite torsional stiffness is described in Skelton and Poots 
(1991); here it was assumed that all of the snow adheres on 
impact, so that the snow accretion factor is unity. A feature of 
this mathematical model is that snowflakes, because of their 
inertia, follow rectilinear paths in the wind direction prior to 
impaction. At the towers, where the conductor is anchored, 
axial growth on the windward side is observed (see Figure la). 
A consequence of this eccentric snow load is that the conductor 
rotates, and the degree of rotation is further enhanced by the 
effect of aerodynamic moment. Consequently, there is a 
progressive development of cylindrical-sleeve growth at 
midspan (see Figure lh). 

These two modes of wet-snow evolution are adequately 
represented by approximate snow models. Thus, axial growth 
is given by the large relaxation time approximation (LRTA) of 
Poots and Rodgers (1976) and cylindrical-sleeve growth by the 
cylindrical-sleeve approximation (CSA) as reported in Admirat 
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One-dimensional thermodynamic wet-snow model 

and Sakamoto (1988). In the following, it is assumed that the 
meteorological conditions and the accretion factor remain 
constant during the snowstorm. 

For axial growth, the LRTA is based on the mass transfer 
balance 

d M / d t  = aGU2r  o, M(0) = 0 (1) 

Here G(kg.m-3) = P/(3600 x VT) is the liquid water content of 
the air and Vr(m.s -1) is the snowflake terminal speed 
corresponding to the precipitation rate P(mm(H20).h-1); 
U(m.s- 1) is the wind speed, and 2ro(m) is the diameter of the 
conductor. For  steady environmental conditions, 

M(t)  = 2aGUrot  (2) 

and the shape of the axial growth, as given by Poots and 
Rodgers (1976), on solving a snow evolution equation is 

(x + aGUt/ps)  2 + y2 = r 2 (3) 

(see Figure la); p,(kg.m- a) is the density of the accreted snow. 
For cylindrical-sleeve growth, the CSA is governed by the 

mass transfer balance 

d M / d t  = aGU2a(t) ,  M(0) = 0 (4) 

where a(t) is the radius of the snow sleeve. Moreover, the mass 
of snow accreted at any time is given by 

M(t)  = 7zps(a(t) 2 - r2o) (5) 

(see Figure lb). For steady environmental conditions, 
Equations 4 and 5 yield the solution 

M(t)  = 2aGUtro + (aGUt)2/nps (6) 

a(t) = trGUt/nps + ro (7) 

In general, the accretion factor a, the snow density Ps, and the 
liquid water content of a snowflake 7 (prior to impaction) are 
functions of the meteorological data (T~, P, U), the relative 
humidity Hr, and the physical constants of the conductor 
system. For a specified geographic environment, these 
parameters can be obtained on validation of the CSA model 
using field measurements. Thus a and p, are deduced on 
ensuring that the theoretical snow load, given by Equation 6, 
is coincident with field measurements. For  France, Admirat et 
al. (1988b) suggest 

a = 0 . 8 8 / U  °88, Ps=  100+20U,  7 = 0  -04T2, (8) 

and it is assumed that this parameterization is relevant to 
wet-snow episodes in the UK. In particular, snow densification 
is seen to be proportional to the wind speed, and the accretion 
factor is roughly in the range 0.1 to 0.2 for wind speeds 
U e I-5, 10](m.s- 1). Further information on the parameteriza- 
tion of tr and p, is available from wind tunnel experiments by 
Sakamoto et al. (1986). Here, on validation of the CSA model 
(Equations 6 and 7), wet-snow data is given for tr and p~ as a 
function of Ta, P, U, and r o. The accretion factor a is shown 
to depend on the air temperature T~, as well as U, and appears 
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To 
Radial thickness of cylindrical snow sleeve, m t 
Biot number T 
Specific heat of air, J.kg- t K -  1 T~ 
Saturation vapor pressure over ice, kPa Tf 
Saturation vapor pressure over water, kPa To 
Liquid water content per unit volume of air, kg.m- a U 
Average heat transfer coefficient, W.m-2 K-~ VT 
Atmospheric pressure, kPa (x, 
Relative humidity 
Thermal conductivity of air, W.m-  1 K -  1 
Thermal conductivity of conductor, W.m-1 K-1  
Latent heat of evaporation, J.kg- 1 
Latent heat of fusion, J.kg- 1 r/a 
Latent heat of sublimation, J.kg-1 0 
Snow load per unit length, kg.m-1 ® 
Mass of water in snow matrix, kg.m- 1 A 
Nusselt number va 
Snow precipitation rate, mm (H20).h- 1 Ps 
Heat flux, W.m-2 a 
Radial coordinate, m Xl 
Dimensionless radial polar coordinate Xw 

y) 

Reynolds number for conductor 
Radius of conductor, m 
Time, s 
Dimensionless time 
Ambient air temperature, °C 
Fusion temperature, °C 
Conductor temperature, °C 
Wind speed, m.s- 
Terminal velocity of average-sized snowflake, m.s- 
Cartesian coordinates, m 

Greek symbols 

Liquid water content of snowflake 
Viscosity of air, N.sm-2 
Angular polar coordinate 
Dimensionless temperature of conductor 
Liquid water content of snow matrix 
Kinematic viscosity of air, m2.s- 1 
Density of snow matrix, kg.m- 3 
Accretion factor 
Heat transfer parameter for ice 
Heat transfer parameter for water 
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to attain maximum values when T, ~ 2°C. Furthermore, in 
these wind tunnel simulations, values of a 6 [0.1, 1] were 
recorded. 

In the development of thermodynamic models for the 
prediction of LWC in axial and cylindrical-sleeve growth, it is 
assumed that densification depends linearly on U, as in 
Equation 8, and that a satisfies the inequality 

VT/U < a(U) _< 1 (9) 

This inequality is established using the following argument. The 
mass transfer rate for freely falling snow, across a surface, is 

(M"X - G VT(kg. m - 2 s - 1 ) (10) s I T  - -  

and the mass transfer for the driven snow is 

• tt (M~) = aGU(kg.m-2s - 1) (11) 

Since more snow is expected to adhere during a wind-driven 
accretion process than during the accretion of freely falling 
snow, it follows that 

• o (,~/~') > (Ms) T (12) 

and hence 

a > V~/U (13) 

For  zero wind (U = 0, V T ,,~ lm.s-1), a _< 1, and hence the 
inequality is as stated in Equation 9. It is of interest to note 
that the lower limit for a is almost identical to the value 
recommended by Admirat et al. (1988b) (see Equation 8; also 
Admirat et al. (1988b) suggest the use of a = 1/U for France 
and Japan). 

For the two modes of wet-snow accretion, the snow load is 
computed using the LRTA and CSA models (Equations 2 and 
6, respectively). In the next section, the related time-dependent 
models are developed for calculating the LWC of the snow 
matrix during the snow evolution process. Results are given for 
the extreme values of the accretion factor, namely, tr = V~/U 
and a = 1. 

T h e r m o d y n a m i c  m o d e l s  f o r  t h e  p r e d i c t i o n  o f  
l iqu id  w a t e r  c o n t e n t  o f  t h e  s n o w  m a t r i x  

The growth and shedding of wet snow on overhead line 
conductors is controlled by both thermal and wind effects. 
Ignoring the latter, Grenier et al. (1986) formulated a 
thermodynamical model for wet-snow accretion in the form of 
a cylindrical sleeve. On consideration of the thermal interaction 
of the wet-snow sleeve with the environment, a snow surface 
heat balance gave details of the LWC of the snow sleeve in 
positive air temperatures; consideration, from the viewpoint of 
wet-snow shedding, was also given to the increase of LWC by 
means of Joule heating. 

The basic approach of Grenier et al. (1986) is now employed 
to formulate the LWC models for the two limiting modes of 
accretion, namely, axial and cylindrical-sleeve growth. Firstly, 
however, consideration is given to the simple one-dimensional 
(l-D) thermodynamic model of snow growth and LWC due to 
snowflakes impacting in a perpendicular direction to a 
plane wall; the model relates to snowflake impaction in the 
neighborhood of the stagnation line in the flow past a bluff 
body. This consideration is followed by the related 1-D model 
for CSA growth, as studied earlier by Grenier et al. (1986), and 
by two-dimensional (2-D) models for axial growth. 

The o n e - d i m e n s i o n a l  p lane  s n o w  layer  

Let the thickness of the wet-snow layer attached to the 
thermally insulated plane surface @1 be a(t) and let snowflakes 

impact on the wet-snow/air interface @2 with speed U (see 
Figure lc). The mass balance at @2 gives 

da 
p , ~  = ~rGU, a(O) = 0 (14) 

and for steady-state environmental conditions 

a(t) = aGUt/p s. (15) 

The energy balance at @2 consists of the heat gained by 
convection and the heat lost by evaporation and sublimation. 
The convective heat transfer between the ambient air and the 
snow layer, which has temperature Tf throughout, is 

Q~ = h(T~ - T 0 (16) 

where Tf(°C) is the fusion temperature and h (W.m-1 K-1)  
is the surface heat transfer coefficient. Heat transfer to the air 
by evaporation from a water surface is 

Q~' = z,[ew(Ta) - ew(Tf) ] = ZwAew (17) 

and by sublimation from an ice surface is 

Q~ = zi[ei(T~) - ei(Tt)] = ziAe i (18) 

where e(TXkPa) is the saturation vapor pressure at temperature 
T. Polynomial expressions for calculating saturation pressure 
over ice and over water are available in Lowe (1977). 
Furthermore, application of the heat and mass transfer analogy 
of Chilton and Colburn (1934) yields 

Z, = 0,622hI~Hr/(c.Hol2/a), Z i  = 0.622hl~Hr/(c.Ho 12/3) (19) 

where LE(J.kg -1) and Ls(J.kg -1) are the latent heat of 
evaporation and sublimation, respectively, ca(J.kg - t  K -1) is 
the specific heat of air, Ho(kPa) is the air pressure, and I = 0.875 
is the Lewis number. The LWC of the snow matrix, denoted 
by A, is defined as the ratio of the mass of liquid to the total 
mass of liquid and ice per unit volume. It is further assumed 
that the surface @ 2  has composition in the ratio of A for water 
to (1 - A) for ice, i.e., partitioned in the same way as for the 
snow matrix. On neglecting heat gained by radiation, the heat 
flux at (~V 2 is 

Q2 = Q~ - AQ~' - (1 - A)Q~ (20) 

= ,~(T= - Tf) - AzIAe w - (1 - A)z,Ae i (21) 

and the rate of production of melt water within the snow 
matrix is 

L dM,  
f - ~ - t  - Q2, Mw(0) = 0 (22) 

The liquid water content is thus given by the ratio 

y~rGUt + Q2t/Lf 
A = (23) 

aGUt 

yielding the expression 

(7 + ,~) 
A = (1 - e~-~' (24) 

where the constant parameters 

= [fi(T~ - -  T d - -  z, AeJ/aGULf, (25) 

e = -- [z ,Ae w - ziAei]/trGUl_,t > 0, (26) 

and e ~ 1. The important result here is that within the evolving 
snow layer, the LWC is independent of time and is proportional 
to the heat transfer ratio h(T~ - Td/(aGULO. 
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The one-d imens iona l  cy l indr ical  sleeve 

The snow load and snow-sleeve thickness for this model are 
given by Equations 6 and 7 (see Figure lb). To formulate the 
energy balance at the snow surface, it is necessary to specify 
the heat transfer coefficient for the snow sleeve in a cross flow 
of air. Apart from adopting an average heat transfer coefficient 
for a bare circular cylinder as in Poets and Skelton (1992), the 
only available heat transfer data relevant to snow cylinders is 
that obtained by Szilder et al. (1988). Average heat transfer 
coefficients 

h = N u K d 2 r  o (27) 

were measured for four typical ice-accretion shapes. The 
length scale for the accretion was taken to be the diameter of 
the bare conductor, 2to; recommended values of the average 
Nusselt number, Nu, are given as 

N---u = 0.117Re °'6a (28) 

for the Reynolds number range Re e 11.5 x 104, 1.7 x 10s]. In 
the above, K,(W.m- ~ K -  1) is the thermal conductivity of air, 
and the Reynolds number, based on the diameter 2ro(m ), is 

Re = 2roU/v~ (29) 

where va(m2.s- 1) is the kinematic viscosity of air. 
The total heat flux a c r o s s  6~2 into the snow sleeve is 

Q2 = 2na(t)Q2 (30) 

where the local heat flux Q2 is expressed as 

Q2 = ~l(Ta - -  Tf) - AzwAew - (1 - A)ziAe i (31) 

(see Equation 21). The rate of melting of the ice within the 
snow matrix is given by 

L dMw 
f - -~ t  = (~2 (32) 

and hence 

A(t) = ~'o7trGU2a(t)dt + ~to(O,2/Le)dt (33) 
np,(a2(t) - r 2) 

For convenience, introduce the new dimensionless time 
variable 

T = ~rGUt/p,ro (34) 

Then the snow load and snow-sleeve thickness, from Equations 
6 and 7, transform to 

M(t) = np,(a 2 - r 2) = p,r2(2T + T2/x) (35) 

a(T) = re(1 + T/n) (36) 

respectively. In terms of this variable, the LWC becomes 

ACT) = 7 -t ~r(1 + T/n)Q2dT (37) 
(T + T2/27zXtrGULf) 

=55oT(1 + T/n)dT+ ngIoT(1 + 17u)AdT 
= 7 -~ (38) 

(T + ~12n) 

Consequently, the first-order differential equation for A(T) 
is 

dA --+A(1-u~) (l_+_T/g) =(7+g6) (1 + V/~) 
dT ( T +  TL/2n) (T+ ~/2r  0 (39) 

Although the general solution of this equation is singular, 

it possesses the required nonsingular solution 

7+r~5 
A - - - -  (40) 

1 -- rc~ 

As in the previous 1-D solution (Equation 24), the LWC 
for the 1-D cylindrical-sleeve growth, given by Equation 40, 
is also independent of time and is proportional to h(T~ - Tr)/ 
(aGUe). It is not, however, inversely proportional to the 
snow-sleeve diameter as reported in Grenier et al. (1986). 

The two-d imens iona l  axial g rowth  

The snow load and LRTA profile for axial growth are given 
in Equations 2 and 3, respectively (see Figure la). In terms of 
the dimensionless time T, the snow load is 

M(T) = 2psr2T (41) 

The global change in the LWC of the snow matrix is due to 
convective, evaporative, and sublimative heat transfer across 
the snow surface, (~2, and heat transfer by conduction across 
the conductor to the root of the snow deposit, c~ 1. Consider 
the thermodynamic model for LWC in the case when the 
conductor surface is insulated, i.e., there is no heat transfer from 
the environment through ~z. The rate of production of melt 
water within the snow matrix is given by 

dMw 
L r ~ -  t = (2aGUt/ps + nro) 

x [h(T~ - Tf) - Ax.Ae w - (1 - A)ziAei] (42) 

which, in dimensionless variables, is 

~ \ P ~ r o 2 / = 2  r + ~  (5+eA)  

Therefore, the LWC is governed by the equation 

7+!f%+ = (6 + eA)dT 
TJo\ 

yielding the first-order differential equation 

1 (  7") 1 (  -~3 T) dAdT -~ =~. 7+ +a - - + A  1 - - e  
2 2 

(43) 

(44) 

(45) 

The solution to this equation is given by 

7" A(T) = - -  
1 - m/2  

o~ - 1 '  ' 7*E 
+ 5_Texp (eT) E (46) 

+ 1 - n ~ / 2  J , = o ( 2 - n e / 2 + r ) r !  

where the series is convergent for all values of eT. In the 
insulated case, 7" is defined as 

7" = 7 + n&/2 (47) 

Thus for the 2-D axial growth mode, with snow root insulated, 
the LWC is a function of the time. 

Consider now the thermodynamic model for the LWC in the 
more realistic case, when the snow root gains heat from the 
environment by conduction across @1, i.e., the conductor is not 
insulated. The thermal state of the conductor is controlled by 
the isothermal surface temperature T O = T r at the snow/con- 
ductor surface qfl and by the convective heating on the bare 
surface fie due to the wind. During the snow accretion 
process, assume a steady-state temperature within the 
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conductor: this entails solving the heat conduction problem 

V2To = O, r < re (48) 

To = Tf on c£ 1 (49) 

and 

0Tol 
r e  ~-r ,= ,o  = -~T=  -- To) on ~o (50) 

In terms of the dimensionless variables 

R = r/r o, O = (T O - Tr)/(Ta - Tf) (51) 

the mixed boundary value problem for O(R, 0) is 

1 3 (R0O" ~ I 0 2 0 = 0 ,  R < l ,  0 e [ 0 , 2 n  ] (52) 
R OR \ 0R J + R --3 O0 ----T 

O = 0 on ~¢1: R = 1, ~ < 0 < ~ (53) 

~O 
Bi(1 ®) on q¢o: R 1, 0 < 0 < ~ 3~ . . . .  - - - ~ , T  < 0 < 2 n  (54)  

OR 

Here the Biot number Bi is defined as 

Bi = hro/K o, (55) 

where Ko(W.m -1 K -1) is the thermal conductivity of the 
conductor (see Figure 2). This Dirichlet-Neumann problem (see 
Sneddon 1966) cannot be solved analytically, but is readily 
solved numerically by finite-difference techniques, The required 
heat flux at the root is 

f 0 r o  
QI = - Ko , ~ r  ,=,o r°dO 

- ,  /'a+/2 00(1, 0) 
= - r e ( T ,  - o--ff  d O .  

(56) 

(57) 

On application of the divergence theorem to the boundary- 
value problem (Equations 52-55), it follows that 

01 = ~ro(T, - Tf)ql, (58) 
where ql is defined as 

qlf+0 (1 - -  O ( 1 ,  0 ) )d0  (59)  

ql is readily obtained by quadratures once the numerical 
solution for ®(R, 0) is available. 

.0( +o /0,1i. 

Figure 2 Mixed boundary value problem governing the steady- 
state temperature of the conductor 

For the noninsulated conductor, the rate of production of 
melt water is given by a modified version of Equation 42, 
namely, 

dMw 
L f - ~ t  = (2aGUt/p, + nro) 

x [h(T~ - Tf) - Ax,Aew - (1 - A)x+Aei] 

+ hro(T , - Tf)ql (60) 

and, consequently, the LWC is governed by the equation 

1L I(;) ] A(T) = ? + ~ T +  (6 + sA) + ~tq~ dT, (61) 

where 

= htT, - Tf)/(2GGULf). (62) 

The solution of Equation 61 is given for the noninsulated case 
by Equation 46, with ?* replaced by 

?* = ? + n6/2 + ctql. (63) 

The above completes the formulation of the thermodynamic 
models for the prediction of LWC during the accretion modes 
of axial and cylindrical-sleeve growth. Some illustrative results 
are now given in the next section. 

R e s u l t s  

Predictions of the LWC of the snow matrix, as a per- 
centage of snow load, are presented graphically for 
the various thermodynamical models. In general, for constant 
climatological conditions, the values are taken as air 
temperature T, = I°C, snow precipitation rate P = 1.0ram 
(H20).h -1, wind speed U = 5 m.s -1, and relative humidity 
Hr = 0.95. For snow accreting on a plane, the heat transfer 
coefficient is assumed to be h = 50 W.m -2 K - l ;  for snow 
accreting on a conductor of radius ro = 1.863 x 10 -2 m, 
thermal conductivity Ko = 4W.m -1 K -~, h depends on the 
Reynolds number of the conductor, as given by Equations 27 
and 28. Table 1 lists the physical constants employed. 

The LWC for the 1-D models is independent of 
time, so the following approach is adopted to highlight the 
dependence of LWC on the set of climatological parameters 
{T,, P, U, Hr}. Three of the parameters assume the constant 
values given above, while the fourth is allowed to vary, in turn, 
as 

r ,  = 2,7 ] 
P = 2~/ 
U = 10t/ for t /e (0, 1). (64) 

Hr = 0.9 + 0.1r/ 

Figures 3a and 3b display the resulting four curves for the LWC 
of the plane snow layer when tr = 1.0 and when tr = Vr/U, 
respectively. The LWC at the point of intersection, which 
represents the LWC for the set of constant values {1.0, 1.0, 5, 

Table  I Physical properties of conductor and snow 

Specific heat of air ca, J.kg. -1 k -+ 1006 
Kinematic viscosity of air re, m=.s -1 1.36 x 10 -5  
Thermal conductivity of air Ka, W . m - I K  -~ 2.42 x 10 -2  
Thermal conductivity of Ko, W.m -1 K -+ 4.0 

condluctor 
Latent heat of evaporation LE, J.kg -+ 2.51 x 10 e 
Latent heat of fusion Lf, J.kg -~ 3.25 x 105 
Latent heat of sublimation Ls, J.kg -1 2.835 x 10 e 
Radius of conductor re, m 1.863 x 10 -2  
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Figure 3a LWC as a function of air temperature, precipitation rate, 
wind speed, and relative humidity for the 1-D model: a = 1.0 

Corresponding graphs are shown in Figures 4a and 
4b for the CSA model. The results are similar, except 
for a = Vx/U, when LWC increases with increasing wind speed 
and the point of intersection is for the notably higher LWC of 
23 percent. 

The dependence on time of the LWC for the LRTA 
model is displayed in Figures 5a and 5b, for a = 1.0 
and a---I//UT, respectively. The results for the insulated 
conductor are compared with those for the noninsulated 
conductor over a period of 120 minutes. The LWC increases 
almost linearly with time, and the heat flux across the 
snow--conductor boundary ~1 contributes to a considerably 
higher LWC than when the boundary is insulated. From Figure 
5b it is clear that, for the noninsulated conductor, no 
accretion can occur for a = VT/U when T~ = 1.0°C, since the 
LWC exceeds 80 percent; even when T a = 0.5°C, the LWC is 
about 40 percent, as shown. 

C o n c l u s i o n s  

5 -  

0 ' " i i i i i 
0 0 . 2  0 , 4  0 .6  0 .9  1 , 0  

b 

Figure 3b LWC as a function of air temperature, precipitation rate, 
wind speed, and relative humidity for the 1 -D model: cr = VT/U 

0.95}, is about 5 percent for G = 1.0 increasing to 8 
percent for a = VT/U. Figure 3a shows that for a = 1.0, the 
LWC increases rapidly with increasing T~ and decreases with 
increasing P, U, and Hr, especially for small values of P and 
U. Reducing the accretion factor a to Vx/U (see Figure 3b) 
enhances the influence of the climatological parameters T~, P, 
and Hr on the LWC, but the LWC is here independent of U, 
since a GU is constant. Many of these features may be seen more 
readily, for example, on rewriting Equation 24 for the plane 
layer in physical variables. Thus, for AT = (T a - Tf) ~ [0, 2]°C, 

+ [=(T~ - TeX1 - f l IHr) /aGULr  
A = , (65) 

1 - h(T= - T f )~zHr /aGUL r 

where 

~1 = 0.622Ls/(calZ/3 Ho)~i (66) 

and 

/~2 = 0.622(L~w - Ls~i)/(calZ/3Ho) (67) 

and, from Lowe (1977), the vapor pressure-temperature 
coefficients are 

~j = 0.0543 k.Pa.°C- 1 (68) 

~, = 0.0473 k.Pa.°C- 1. (69) 

A theoretical investigation into the LWC of the snow 
deposit predicted by three simple thermodynamical models of 
snow accretion is presented. Analytical solutions are derived 
for LWC during wet-snow accretion on an insulated plane 
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Figure 4a LWC as a function of air temperature, precipitation rate, 
wind speed, and relative humidity for the CSA model: cr = 1.0 
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Figure 4b LWC as a function of air temperature, precipitation rate, 
wind speed, and relative humidity for the CSA model: a = VT/U 
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surface, and for the accretion modes of axial and cylindrical- 
sleeve growth as occurs on a conductor span. For  axial 
growth, a similar t ime-dependent solution is obtained 
whether the conductor  is thermally insulated or not; 
in the latter case, the heat flux across the snow-conductor  
boundary is determined from the numerical solution of a mixed 
boundary value problem for the steady-state temperature of the 
conductor. 
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